A-LEVEL Mathematics

MS1B - Statistics 1B
Mark scheme

June 2018

Version/Stage: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
Jor ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
-x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

General Notes for MS1B

GN1 There is no allowance for misreads (MR) or miscopies (MC) unless specifically stated in a question.
GN2 In general, a correct answer (to accuracy required) without working scores full marks but an incorrect answer (or an answer not to required accuracy) scores no marks.

GN3 In general, a correct answer (to accuracy required) without units scores full marks.
GN4 When applying AWFW, a slightly inaccurate numerical answer that is subsequently rounded to fall within the accepted range cannot be awarded full marks.

GN5 Where percentage equivalent answers are permitted in a question, then penalise by one accuracy mark at the first correct answer but only if no indication of percentage (eg \%) is shown.

GN6 In questions involving probabilities, do not award accuracy marks for answers given in the form of a ratio or odds such as $13 / 47$ given as $13: 47$ or $13: 34$.

GN7 Accept decimal answers, providing that they have at least two leading zeros, in the form $c \times 10^{-n}$ (eg 0.00321 as 3.21×10^{-3}).

GN8 Where a candidate's response to a part of a question is simply to label the part (eg (d)(i)) with nothing else (ie no attempt at a solution), then this is still treated as a response and marked as 0 rather than NR. Also, deleted work, if not replaced, should be marked and not treated as NR.

Specific Notes for MS1B

1. Question 1

2. Question 2
3. Question 3

4. Question 4

5. Question 5

6. Question 6

7. Question 7

Q	Solution	Mark	Total	Comment
2	Emboldened words are required in part (b)(ii)			
(a) (i) (ii)	$\begin{aligned} & r=\underline{-0.75 \text { to }-\mathbf{0 . 9 5}} \\ & r=\underline{-0.20 \text { to }+0.20} \end{aligned}$	B1 B1	2	AWFW (-0.89935) AWFW (-0.00743)
(b) (i)	$\begin{aligned} & r=\underline{0.00375} \\ & r=\underline{\mathbf{0 . 0 0 3 7} \text { to } 0.0038} \\ & r=\underline{\mathbf{0 . 0 0 3} \text { to } 0.004} \end{aligned}$ or	$\begin{gathered} \text { B3 } \\ \text { (B2) } \\ \text { (B1) } \end{gathered}$		CAO; (see GN7) (0.0037498) AWFW; (see GN7) AWFW; (see GN7)
	$\begin{array}{ll} \sum t=290 & \sum t^{2}=9326 \quad \sum t c=13346.27 \\ \sum c=460 & \sum c^{2}=24212.2686 \end{array}$ or $S_{t t}=916 \quad S_{c c}=3052.2686 \quad S_{t c}=6.27$ Attempt at substitution into a correct corresponding formula for r $r=\underline{\mathbf{0 . 0 0 3 7 5}}$	(M1) (m1) (A1)	3	Correct attempt at 5 summations (Look for $\sum t c=\sum t \sum c=133400$) Correct attempt at 3 summations CAO; (see GN7)
(ii)	There is no (linear) correlation	Bdep1		Dep on $r=0.003$ to 0.004
Notes	1 Statements must include the word "no" without qualificat "association" or "relationship" 2 Use of any of the following terms (even in conjunction with weak or mild or slightly or fairly or pretty or signific	-a or add "no"): $\mathrm{nt}{ }^{\prime \prime} \Rightarrow$	nal phra ost or p0	together with only "correlation" or ually or low or little or small or
Notes	between the time and cost of items	Bdep1	2	Dep on $r=-0.99$ to +0.99
	1 Accept order of "cost of items" and "time" 2 "As time spent increases, cost of items purchased remains the same" \Rightarrow Bdep0 Bdep1 3 "As time $/ t$ increases, cost $/ c$ remains the same" \Rightarrow Bdep0 Bdep0 4 Any suggestion that "as time spent increases, cost of items purchased increases" \Rightarrow Bdep0 Bdep0			
		Total	7	

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Mark \& Total \& Comment \\
\hline 3 \& \multicolumn{4}{|l|}{Accept the equivalent percentage answers with \%-sign (see GN5)} \\
\hline (a)(i) \& \[
\begin{aligned}
\& \mathrm{P}(X>757)=\mathrm{P}\left(Z>\frac{\mathbf{7 5 7}-\mathbf{7 3 0}}{\mathbf{2 0}}\right)= \\
\& \mathrm{P}(Z>1.35)=1-\mathrm{P}(Z<1.35)=1-0.91149 \\
\&=\underline{\mathbf{0 . 0 8 8} \text { to } \mathbf{0 . 0 8 9}}
\end{aligned}
\] \& M1
m1
m1 \& 3 \& \begin{tabular}{l}
Standardising \(\mathbf{7 5 7}\) with \(\mathbf{7 3 0}\) and \(\mathbf{2 0}\) but allow (730-757) \\
Area change; may be implied but only by the correct answer \\
AWFW \\
(0.08851)
\end{tabular} \\
\hline (ii) \& \[
\begin{aligned}
\& \mathrm{P}(706<X<730) \\
\&=\mathrm{P}(-\underline{\mathbf{1 . 2}}<Z<\underline{\mathbf{0}}) \text { or } \\
\&=(0.5-(1-0.88493)) \text { or }
\end{aligned}(0.88493-0.5)
\] \& B1
B1 \& \multicolumn{2}{|r|}{CAO 0 and 1.2} \\
\hline \begin{tabular}{l}
(b) \\
(i)
\end{tabular} \& \[
\begin{array}{r}
\left(\frac{350-\mu}{\sigma}=0\right) \Rightarrow \\
0.99 \Rightarrow z=\underline{\mathbf{3 5 0}} \\
\frac{\mathbf{2 . 3 2} \text { to }-\mathbf{2 . 3 3}}{} \\
\frac{\mathbf{3 2 0}-\mathbf{(\mathbf { 3 5 0 } \text { or } \boldsymbol { \mu })}}{\boldsymbol{\sigma}}=\left(\begin{array}{l}
\pm 2.05 \text { to } \pm 2.06 \\
\pm 2.32 \text { to } \pm 2.33 \\
\pm 2.57 \text { to } \pm 2.58
\end{array}\right) \\
\Rightarrow \sigma=\underline{\mathbf{1 3}}
\end{array}
\] \& B1
B1

M1

A1 \& 4 \& | CAO; this should result immediately from the two 'standard' simultaneous equations; other one is below for M1 |
| :--- |
| AWFW; ignore sign |
| (-2.3263) |
| Standardising $\mathbf{3 2 0}$ with ($\mathbf{3 5 0}$ or $\boldsymbol{\mu}$) and σ but allow $((350$ or $\mu)-320)$ and equating to one of 3 listed z-values but allow inconsistent signs |
| CAO; |
| (12.87 to 12.94) |
| Penalise inconsistent signs here |

\hline \multirow[b]{2}{*}{Notes} \& \& B1

M1

A1 \& 3 \& | AWRT; ignore sign |
| :--- |
| (1.2816) |
| Standardising (\boldsymbol{w} with 0) (OE) and $(+\mathbf{1 2 . 8}$ to $\mathbf{+ 1 3}$, even if A0 awarded in (b)(i)) and equating to one of 3 listed z-values with consistent signs |
| AWFW |
| (16.47 or 16.66) |

\hline \& \multicolumn{4}{|l|}{| 1 To score M1 the expression $\frac{ \pm(w(-0))}{(12.87 \text { to12.94) or } 13}$ (OE) MUST be equated to one of the 3 listed $(\pm) z$-values which then leads, without fudging, to a POSITIVE value for w |
| :--- |
| 2 The expression $\frac{ \pm 2 w}{(12.87 \text { to12.94) or } 13}=1.28 \Rightarrow \mathrm{M} 0$ |}

\hline \& \& \& \&

\hline \& \& Total \& 12 \&

\hline
\end{tabular}

Q	Solution	Mark	Total	Comment
4	Emboldened words (at least one chosen from emboldened options) are required in parts (a), (b)(ii) \& (d)			
(a)	x is the independent/controlled variable or y is the response/dependent variable or y depends on x or x does not depend on y or x are set/fixed values/intervals	B1	1	Accept x and y in context of question
(b)(i)	$\begin{aligned} b(\text { gradient } / \text { slope }) & =\underline{\mathbf{0 . 0 3 5 5} \text { to } \mathbf{0 . 0 3 5 6}} \\ b(\text { gradient slope) }) & =\underline{\mathbf{0 . 0 3 5} \text { to } \mathbf{0 . 0 3 6}} \\ a \text { (intercept) } & =\underline{\mathbf{0 . 2 1 4} \text { to } \mathbf{0 . 2 2 2}} \\ a \text { (intercept) } & =\underline{\mathbf{0 . 1 9} \text { to } \mathbf{0 . 2 5}} \end{aligned}$ or	B2 (B1) B2 (B1)		AWFW AWFW AWFW AWFW
	$\begin{array}{ll} \sum x=780 & \sum x^{2}=65000 \\ \sum y=30.55 & \sum x y=2479.9 \end{array}$ or $S_{x x}=18200 \quad S_{x y}=646.9 \quad\left(S_{y y}=23.2806\right)$ Attempt at substitution into a correct corresponding formula for b $\begin{aligned} b(\text { gradient } / \text { slope }) & =\underline{0.0355} \text { to } \mathbf{0 . 0 3 5 6} \\ a(\text { intercept }) & =\underline{0.214 ~ t o ~} \mathbf{0 . 2 2 2} \end{aligned}$	(M1) (m1) (A1) (A1)	4	Correct attempt at 4 summations (Look for $\sum x y=\sum x \sum y=23829$) Correct attempt at 2 summations AWFW (0.035544) AWFW (0.217363)
Notes	1 Only if equation stated without " $\boldsymbol{b}=$ and $\boldsymbol{a}=$ ", then award marks as detailed above for $y=a+b x$ stated in (b)(i); deduct 1 mark if " $y=$ " or " x " is missing; deduct 2 marks if both " x and $y=$ " are missing 2 Values of a and b interchanged and equation $y=a x+b$ stated in (b)(i) \Rightarrow max of 4 marks 3 Values of a and b interchanged and equation $y=a+b x$ stated in (b)(i) $\Rightarrow 0$ marks 4 Values are not identified or simply $a=\#$ and $b=\#$, then $(0.035$ to 0.036$) \Rightarrow$ B1 and (0.19 to 0.25) \Rightarrow B1 but accept, for example, as identification, $[a=\#, b=\#$ with $y=a+b x$ stated with no substitution for $a \& b]$ or [intercept $(a)=\#, \operatorname{gradient}(b)=\#]$ $5(x$ or $y)=-5.3+27.8(y$ or $x) \Rightarrow 0$ marks; unless corrected later, this will result in only the first B1 in (d) being available 6 Some/all of marks can be scored in (b)(ii), (c) \& (d), even if some/all of marks are lost in (b)(i), but marks lost in (b)(i) cannot be recouped by subsequent working in (b)(ii), (c) or (d)			
(ii)	a (intercept): (expected/average/mean/usual/typical) yield of tomatoes when no/0/zero potassium in a plant's liquid feed or similar/close/near to observed yield (of 0.31)	Bdep1		Dep on $0.19 \leq a \leq 0.25$
Note	1 Value of $y /$ yield when $x /$ potassium $=0 \Rightarrow \mathrm{~B} 0$			
Notes	b (gradient/slope): for each/every increase of a/one $\mathbf{m g} / \mathbf{l}$ of potassium in a plant's liquid feed a plant's (expected/average/mean/usual/typical) yield of tomatoes increases by a value within $0.035(\mathrm{~kg})$ to $0.036(\mathrm{~kg})$	B1 Bdep1	3	Dep on B1
	1 To score any marks, an explanation must indicate change in x affecting change in y, not change in y affecting change in x 2 Any increase in potassium must be matched by a correct increase in yield to score B1dep (eg $10(\mathrm{mg} / \mathrm{l})$ and $0.35(\mathrm{~kg})$ to $0.36(\mathrm{~kg})$) 3 Reference only to correlation \Rightarrow B0 Bdep0			
SC	1 As $x /$ potassium $/ \mathrm{mg}$ increases then $y / \mathrm{yield} / \mathrm{kg}$ increases by b ($\mathrm{OE)} \Rightarrow \mathrm{~B} 1$; only if the value of $b(0.035 \leq b \leq 0.036)$ is stated here but context and/or units are not required			
	Parts (a) \& (b)	Total	8	

Q	Solution	Mark	Total	Comment
4	Continued			
	Parts (a) \& (b)	Total	8	
(c)(i)	$\operatorname{Res}_{\mathrm{H}}$ $=\underline{\mathbf{0 . 2 8} \text { to }-\mathbf{0 . 2 3}}$ $\operatorname{Res}_{\mathrm{H}}$ $=\underline{\mathbf{0 . 3 2} \text { to }-\mathbf{0 . 1 9}}$ or $=\underline{\mathbf{+ 0 . 1 9} \text { to } \mathbf{+ 0 . 3 2}}$	B2 (B1)	2	AWFW; do not ignore sign (-0.25544) AWFW; either
(ii)	Sum $_{11}$ $=\underline{\mathbf{+ 0 . 1 4} \text { to } \mathbf{+ 0 . 1 9}}$ Sum $_{11}$ $=\underline{\mathbf{0 . 1 9} \text { to }-\mathbf{0 . 1 4}}$ or $=\underline{\mathbf{0 . 1 0} \text { to } \mathbf{0 . 2 3}}$ or $=\underline{\mathbf{0 . 4 1} \text { to }-\mathbf{0 . 2 8}}$	B2 (B1)	2	AWFW; do not ignore sign (0.16544) AWFW; do not ignore sign
(d)	Extrapolation/outside range or outside data May kill plants Plants have maximum yield $y_{150}=\underline{(5.44 \text { to } 5.65)>4.63}$ and/or $\left.y_{200}=\underline{(7.19} \text { to } 7.45\right)>4.89$	B1 B1	2	$150 \& 200>120$ AWFW (5.54896) AWFW (7.32615)
Notes	1 Must evaluate one or both of above y-values to within range(s) and clearly compare with corresponding given y-value(s) 2 Accept as comparison(s) "(much) greater or (much) larger or (much) bigger or (much) more than or exceeds or above" (OE) 3 Accept corresponding wording if comparison(s) reversed			
SCs	$\begin{aligned} & \mathbf{1} r_{150}=(-1.02 \text { to }-0.81)<(-0.32 \text { to }-0.19) \text { and/or } r_{200}=(-2.56 \text { to }-2.30)<(-0.32 \text { to }-0.19) \Rightarrow \mathrm{B} 1 \\ & \mathbf{2}(5.44 \text { to } 5.65)-4.63)) / 4.63=17.0 \% \text { to } 22.0 \% \text { and/or }((7.19 \text { to } 7.45)-4.89)) / 4.89=47 \% \text { to } 53 \% \Rightarrow \mathrm{~B} 1 \\ & \mathbf{3}(4.89-4.63)=0.26<50 \times(0.035 \mathrm{t} 0.003)=(1.75 \text { to } 1.80) \Rightarrow \mathrm{B} 1 \\ & \mathbf{4}(4.89-4.63) /(200-150)=0.26 / 50=(0.005 \text { to } 0.0052)<(0.035 \text { to } 0.036) \Rightarrow \mathrm{B} 1 \\ & \hline \end{aligned}$			
		Total	14	

Q	Solution	Mark	Total	Comment
5	Accept 3 dp rounding of probabilitiesEmboldened words (at least one chosen from emboldened options) are required in part (a)			
(a)	(i) Appropriate or Yes (ii) Not appropriate or No (iii) Not appropriate or No $\begin{array}{r} n=\underline{20} \\ p=\underline{2 / 6} \text { or } 1 / 3 \text { or } 0.3 \text { r or } 0.33 \text { or } 33 \% \end{array}$ Number of trials or tosses or \boldsymbol{n} is not fixed \mathbf{P} (yellow highlighter pen) or \boldsymbol{p} is not constant/not fixed/variable/changes/varies or selection of pens or events is/are dependent/not independent	B1		All 3 stated correctly Cannot be implied CAO $\mathrm{B}(20,0.33(\mathrm{OE})) \Rightarrow \mathrm{B} 2$ CAO
(i)		B1 B1		
(ii)		B1		No other alternatives
(iii)		B1	5	No other alternatives
(b) (i)	$\mathrm{P}\left(\mathrm{M}_{\mathrm{LH}} \leq 3\right)=\underline{\mathbf{0 . 4 7 1}}$	B1	(1)	AWRT (0.471121)
Notes	$\begin{array}{lr} \mathrm{P}\left(2 \leq \mathrm{W}_{\mathrm{LH}} \leq 6\right)= & 0.9005 \text { or } 0.7937 \\ \text { minus } & 0.0805 \text { or } 0.2228 \\ & \\ & \\ & \left(p_{1}\right) \\ & \underline{\mathbf{0 . 8 2}} \end{array}$	M1 M1 A1	(3)	Seen as first term in a subtraction Seen as second term in a subtraction AWRT (0.820001)
	1 For no method or calculation of individual terms; award B3 for 0.82 (AWRT); B2 for 0.677 to 0.678 (AWFW); B2 for 0.713 to 0.714 (AWFW); B2 for 0.570 to 0.572 (AWFW); B0 for anything else 2 Answers seen using [(0.9195 or 0.7772) - (0.0995 or 0..2063)] [ie $\left.\left(1-p_{2}\right)-\left(1-p_{1}\right)\right] \Rightarrow$ M1 M1 A1 max 3 Answers seen using $\left[1-\left(p_{1}-p_{2}\right)\right]$ even after $\left(p_{1}-p_{2}\right)$ [eg $\left.1-(0.9005-0.0805)=\mathbf{0 . 1 8}\right] \Rightarrow 0$ marks 4 Use of $p_{1} \times p_{2}$ or $p_{1} \div p_{2}$ or $p_{1}+p_{2}$ or p_{1} only or p_{2} only $\Rightarrow 0$ marks			
(iii)	Use of $\mathbf{B}(\mathbf{5 0}, \mathbf{0 . 1 0})$ $\begin{aligned} \mathrm{P}\left(\mathrm{~W}_{\mathrm{NLH}}>40\right) & =\mathrm{P}\left(\mathrm{~W}_{\mathrm{LH}} \leq 9\right) \text { or } \mathrm{P}\left(\mathrm{~W}_{\mathrm{LH}}<10\right) \\ & =0.9755 \text { or } 0.9906 \\ & =\underline{\mathbf{0 . 9 7 5} \text { to } \mathbf{0 . 9 7 6}} \end{aligned}$ or	B1 M1 A1		Seen or used; can be implied by either 0.9755 or 0.9906 seen AWFW (0.975462)
	Use of $\mathbf{B}(\mathbf{5 0}, \mathbf{0 . 9 0})$	(B1) (M1) (A1)		Seen or used; can be implied by 0.0245 or 0.0094 or 0.9906 seen AWFW (0.975462)
		(3) 7		
		Total	12	

Q	Solution	Mark	Total	Comment
6				
(a)(i)	$\)\begin{tabular}{l} \(95 \% \Rightarrow z=\underline{\mathbf{1 . 9 6}}\) \\ \text { CI for }\(\mu \text { is: }\) \\ \(1075 \pm\binom{ 1.96 \text { AWRT }}{1.64 \text { to } 1.65 \text { AWFW }} \times \frac{36}{\sqrt{50}}\) \\ \text { Thus: } \\ \text { or } \\ \end{tabular}\(\quad \underline{\underline{\mathbf{1 0 7 5} \pm \mathbf{1 0}}}$	B1 M2 $(-1$ ee $)$ Adep1	4	AWRT Ignore any notation M 0 if CI is not of the form: $\binom{1075}{1072} \pm\binom{ 1.96}{1.64 \text { to } 1.65} \times\binom{ 36}{6} / \sqrt{\binom{50}{49}}$ CAO (1075 ± 9.97869) Dependent on award of M2 CAO (1065.02, 1084.98)
Note	1 If award of M0 or M1 is followed by a numerically correct $\mathrm{CI} \Rightarrow$ possibly 2 solutions			
SC	1 NMS for CI then (1065, 1085) $\Rightarrow 4$ marks; (1065.0, 1085.0) (AWRT) \Rightarrow B3			
(ii)	CI includes 1072 or 1072ε CI Hence accept/agree with claim that $\mu=1072$	BF1 Bdep1		F on (a)(i); providing LCL < 1072 < UCL and 1072 is not used in CI construction OE ; dependent on BF1
Notes	1 Statement must clearly indicate that " 1072 is within the corresponding C1" OE 2 Statements of the form "It/this/mean/value/etc is within the (corresponding) CI" \Rightarrow BF0 Bdep0 3 Statements of the form " 1072 is within 95% of the data/values/millilitres/bottles" \Rightarrow BF0 Bdep0 4 Statements such as "Claim is likely to be reasonable/supported/possible/valid/rue/right/correct/accurate" \Rightarrow Bdep1 but only providing BF1 scored			
(b)	$98 \% \Rightarrow z=\underline{\mathbf{2 . 3 2} \text { to } \mathbf{2 . 3 3}}$	B1		AWFW (2.32635)
		M1		Use of μ or \bar{x} can score 4 marks Use of $1075 \Rightarrow$ B1 M1 max Use of anything else $\Rightarrow \mathrm{B} 1$ max
	Thus: $\begin{align*} & \binom{2.32 \text { to } 2.33}{2.57 \text { to } 2.58} \times \frac{36}{10}=\sqrt{n} \\ & \quad n=69.76 \text { to } 70.36 \Rightarrow \underline{\mathbf{7 0} \text { or } \mathbf{7 1}} \tag{70.14} \end{align*}$	m1 A1	4	Re-arranging for \sqrt{n} or n CAO either
SC	1 Method of T\&I; $z=2.32$ to $2.33 \Rightarrow \mathrm{~B} 1$; evaluation of $\left(\begin{array}{l}2.32 \text { to } 2.33 \\ 2.57 \\ \text { to } 2.58\end{array}\right) \times \frac{36}{\sqrt{n}}$ with a numerical integer value for $n \Rightarrow \mathrm{M} 1$; since $2.32 \times 36 / \sqrt{64}=10.44(10)$ and $2.33 \times 36 / \sqrt{77}=9.56(10)$ then $n=\operatorname{int}(64$ to 77$) \Rightarrow$ A1 but $n=70$ or $71 \Rightarrow$ A2			
		Total	10	

Q	Solution	Mark	Total	Comment		
7	Accept the equivalent percentage answers with \%-sign (see GN5)					
(a)			3	CAO; accept $154 / 1000$ or $77 / 500$ CAO; accept 83/100 CAO; accept $676 / 1000$ or $338 / 500$ or 169/250		
(i)	$\mathrm{P}(L \cap M)=0.55 \times 0.28=\underline{\mathbf{0 . 1 5 4}}$	B1				
(ii)	$\mathrm{P}(L \cup M)=0.55+0.28=\underline{\mathbf{0 . 8 3}}$	B1				
(iii)	$\mathrm{P}(L \cup M)=0.83-0.154 \quad=\underline{\mathbf{0 . 6 7 6}}$	B1				
Note	1 For fractional answers, do not penalise errors in simplifications; eg 154/1000 $=67 / 500 \Rightarrow$ B1 (for 154/1000)					
(b) (i)	$\mathrm{P}(\mathrm{A}=3)=0.94 \times 0.88 \times 0.76=\underline{\mathbf{0 . 6 2 8} \text { to } \mathbf{0 . 6 2 9}}$	B1	1	AWFW (0.628672)		
	$=\underline{0.628}$ to 0.629					
(ii)	$\begin{aligned} \mathrm{P}(\mathrm{~A}=1)= & (0.94 \times 0.12 \times 0.24)+ \\ & (0.06 \times 0.88 \times 0.24)+ \\ & (0.06 \times 0.12 \times 0.76) \end{aligned}$	M1	2	Fully correct; not ($1-0.88$), etc		
	or $\quad=0.027072+0.012672+0.005472$			Fully correct to 4dp		
	$=\underline{0.045}$ to 0.0455	A1		AWFW (0.045216)		
(iii)	$\begin{aligned} \mathrm{P}(\mathrm{~A} \geq 2)= & (0.94 \times 0.88 \times 0.76) \text { or }(\mathrm{b})(\mathrm{i})+ \\ & (0.94 \times 0.88 \times 0.24)+ \\ & (0.94 \times 0.12 \times 0.76)+ \\ & (0.06 \times 0.88 \times 0.76) \end{aligned}$	M1		Fully correct (c's (b)(i)); not ($1-0.76$), etc		
				Fully correct to 4dp (c's (b)(i))		
	$\begin{array}{ll} \text { or } & =\underline{\mathbf{0 . 9 5 3} \text { to } \mathbf{0 . 9 5 3 5}} \\ \mathrm{P}(\mathrm{~A} \geq 2)= \\ \quad 1-[0.045216 \text { or }(\mathrm{b})(\mathrm{ii})]-(0.06 \times 0.12 \times 0.24) \end{array}$	A1		AWFW (0.953056)		
		(M1)		$1-\text { (b)(ii) }-0.001728$		
	$=\underline{0.953 ~ t o ~} 0.9535$	(A1)	2	AWFW (0.953056)		
(iv) (A)	$\mathrm{P}(\mathrm{A}=4) \quad=\mathbf{0 . 6 0 3}$ to $\mathbf{0 . 6 0 4}$	B1		AWFW (0.60352512)		
			(1)			
(B)	$\mathrm{P}(\mathrm{A}=0)=(0.06 \times 0.12 \times 0.24) \times 0.52$	M1	(2)	Fully correct		
	$=\underline{0.000898}$ to 0.000899	A1		AWFW; (see GN7) (0.00089856)		
			3			
		Total	11			

