

A-LEVEL Mathematics

MS1B – Statistics 1B Mark scheme

6360

June 2018

Version/Stage: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Copyright © 2018 AQA and its licensors. All rights reserved.

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Μ	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
Е	mark is for explanation
$\sqrt{10}$ or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
С	candidate
sf	significant figure(s)
dp	decimal place(s)

Key to mark scheme abbreviations

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

General Notes for MS1B

- GN1 There is no allowance for misreads (MR) or miscopies (MC) unless specifically stated in a question.
- **GN2** In general, a correct answer (to accuracy required) without working scores full marks but an incorrect answer (or an answer not to required accuracy) scores no marks.
- GN3 In general, a correct answer (to accuracy required) without units scores full marks.
- **GN4** When applying AWFW, a slightly inaccurate numerical answer that is subsequently rounded to fall within the accepted range cannot be awarded full marks.
- **GN5** Where percentage equivalent answers are permitted in a question, then penalise by **one accuracy mark** at the first **correct** answer but only if no indication of percentage (eg %) is shown.
- **GN6** In questions involving probabilities, do **not** award **accuracy** marks for answers given in the form of a ratio or odds such as 13/47 given as 13:47 or 13:34.
- **GN7** Accept decimal answers, providing that they have **at least two** leading zeros, in the form $c \times 10^{-n}$ (eg 0.00321 as 3.21×10^{-3}).
- GN8 Where a candidate's response to a part of a question is simply to label the part (eg (d)(i)) with nothing else (ie no attempt at a solution), then this is still treated as a response and marked as 0 rather than NR. Also, deleted work, if not replaced, should be marked and not treated as NR.

Specific Notes for MS1B

- 1. Question 1
- 2. Question 2
- 3. Question 3
- 4. Question 4
- 5. Question 5
- 6. Question 6
- 7. Question 7

Ω	Solution	Marlz	Total	Commont
	SUIUUUII Fmhaldened words (at least one chosen from amhaldened	ontions) er	required	$\frac{1}{1}$
(a)(i)	Mode: 5 is minimum/smallest/lowest value	B1		
(ii)	Range: is affected/skewed/distorted/increased /large/wide/big/high due to value of 95	B1	2	
Notes	 Use only of "inaccurate or incorrect or wrong OE" ⇒ Reasons must relate specifically to the data in the question; large spread or range, range only uses maximum and minim Ignore additional comments, even if incorrect or inaccurate If parts not labelled, then reasons must clearly reference may 	B0 general co num values) te tode or ran	$\frac{2}{1}$ mments (eg) $\Rightarrow B0$	g mode does not use all values,
(b)	Median = <u>17</u>	B1		CAO; ignore method
	Interquartile range $(22 - 10) = \underline{12}$	B1	2	CAO; ignore method
(c)	Mean = <u>20</u>	B1		CAO; see Note 2 $(\Sigma x = 460)$ &
	Standard deviation $(n) = 17.9$ to 18.0 or Standard deviation $(n-1) = 18.3$ to 18.4	B2		$(\sum x^2 = 16608)$ AWFW (17.94678) Do not ignore method; see Note 3 AWFW (18.35013)
	or			
	Standard deviation (<i>n</i> or $n-1$) = <u>17 to 19</u>	(B1)	3	AWFW
Notes	 Where no method is shown for mean and standard deviat If an incorrect method for mean is followed by a numerica If an incorrect method for standard deviation is followed by so B2 becomes B1 or (B1) becomes (B0) 	ion simply ally correct by a numeric	mark numer value \Rightarrow l cally correct	ical values stated B1 value \Rightarrow 2 solutions
(d)	Data is not symmetrical or data is (positively) skewed	B1		Reference only to 'normal' \Rightarrow B0
	Median and IQR or measures/results in (b) or "they" ARE NOT affected/skewed/distorted/influenced/changed by 95/maximum/outlying/extreme/large value			
	OR	B1		
	Mean and SD or measures/results in (c) ARE affected/skewed/distorted/influenced/changed by 95/maximum/outlying/extreme/large value		2	
Note	1 Comments simply about the data (eg large spread) and/o or mean > median or Sd > IQR) \Rightarrow B0	r comment	ts or compar	isons of measures (eg large Sd
		Total	9	

0	Solution	Mark	Total	Comment
2	Emboldened words are required in part (b)(ii)			
(a) (i)	r = -0.75 to -0.95	B1		AWFW (-0.89935)
(ii)	r = -0.20 to $+0.20$	B1	2	AWFW (-0.00743)
(b) (i)	$r = \underbrace{0.00375}_{r = 0.0037 \text{ to } 0.0038}_{r = 0.003 \text{ to } 0.004}$	B3 (B2) (B1)	-	CAO; (see GN7) (0.0037498) AWFW; (see GN7) AWFW; (see GN7)
	$\sum_{t=290} \sum_{t=9326} \sum_{t=13346.27} tc = 13346.27$ $\sum_{t=460} c^{2} = 24212.2686$ or $S_{t} = 916 \qquad S_{cc} = 3052.2686 \qquad S_{tc} = 6.27$	(M1)		Correct attempt at 5 summations (Look for $\sum tc = \sum t \sum c = 133400$) Correct attempt at 3 summations
	Attempt at substitution into a correct corresponding formula for r	(m1)		
	r = 0.00375	(A1)	3	CAO; (see GN7)
(ii)	There is no (linear) correlation	Bdep1		Dep on $r = 0.003$ to 0.004
Notes	 Statements must include the word "no" without qualificat "association" or "relationship" Use of any of the following terms (even in conjunction with weak or mild or slightly or fairly or pretty or significant. 	ion or addit n "no"): "al ant" \Rightarrow B	ional phrase most or vir dep0	tually or low or little or small or
	between			
	the time and cost of items	Bdep1	2	Dep on $r = -0.99$ to $+0.99$
Notes	 Accept order of "cost of items" and "time" "As time spent increases, cost of items purchased remains t "As time/t increases, cost/c remains the same" ⇒ Bdep0 Any suggestion that "as time spent increases, cost of items 	he same" = Bdep0 purchased i	⇒ Bdep0 I	3dep1 ⇒ Bdep0 Bdep0
		Total	7	

Q	Solution	Mark	Total	Comment
3	Accept the equivalent percentage answers with %-sign (s	ee GN5)		
(a)(i)	$P(X > 757) = P\left(Z > \frac{757 - 730}{20}\right) =$	M1		Standardising 757 with 730 and 20 but allow (730 – 757)
	P(Z > 1.35) = 1 - P(Z < 1.35) = 1 - 0.91149	m1		Area change; may be implied but only by the correct answer
	= <u>0.088 to 0.089</u>	A1	3	AWFW (0.08851)
(ii)	$P(706 < X < 730) = P(-\underline{1.2} < Z < \underline{0}) \text{ or } P(\underline{0} < Z < \underline{1.2})$	B1		CAO 0 and 1.2
	= (0.5 - (1 - 0.88493)) or $(0.88493 - 0.5)$			
	= <u>0.384 to 0.386</u>	B1	2	AWFW (0.38493)
(b) (i)	$\left(\frac{350-\mu}{\sigma}=0\right) \implies \qquad \mu=\underline{350}$	B1		CAO; this should result immediately from the two 'standard' simultaneous equations; other one is below for M1
	$0.99 \implies z = -2.32 \text{ to } -2.33$	B1		AWFW; ignore sign (-2.3263)
	$\frac{320 - (350 \text{ or } \mu)}{\sigma} = \begin{pmatrix} \pm 2.05 \text{ to } \pm 2.06 \\ \pm 2.32 \text{ to } \pm 2.33 \\ \pm 2.57 \text{ to } \pm 2.58 \end{pmatrix}$	M1		Standardising 320 with (350 or μ) and σ but allow ((350 or μ) – 320) and equating to one of 3 listed <i>z</i> -values but allow inconsistent signs
	$\Rightarrow \sigma = 13$	A1	4	CAO; (12.87 to 12.94) Penalise inconsistent signs here
(ii)	$P(Y < \mu + w) = 0.90 \implies z = \underline{1.28}$ or $P(Y > \mu - w) = 0.90 \implies z = \underline{-1.28}$	B1		AWRT; ignore sign (1.2816)
	$\frac{((350 \text{ or } \mu) + w) - (350 \text{ or } \mu)}{(12.87 \text{ to } 12.94) \text{ or } 13} = \begin{pmatrix} 0.84 \text{ AWRT} \\ 1.28 \text{ AWRT} \\ 1.64 \text{ to } 1.65 \end{pmatrix}$ or $w = (\text{listed} (+z\text{-value})) \times ((12.87 \text{ to } 12.94) \text{ or } 13) \text{ (OE)}$	M1		Standardising (<i>w</i> with 0) (OE) and (+ 12.8 to + 13 , even if A0 awarded in (b)(i)) and equating to one of 3 listed <i>z</i> -values with consistent signs
	w = 16.4 to 16.7	A1	3	AWFW (16.47 or 16.66)
Notes	1 To score M1 the expression $\frac{\pm(w(-0))}{(12.87 \text{ to} 12.94) \text{ or } 13}$ (OE) without fudging, to a POSITIVE value for w 2 The expression $\frac{\pm 2w}{(12.87 \text{ to} 12.94) \text{ or } 13} = 1.28 \implies M0$	MUST be	equated to	one of the 3 listed $(\pm)z$ -values which then leads,
		Total	12	

0	Solution	Mark	Total	Comment	
	Emboldened words (at least one chosen from emboldened	options) ar	e required	in parts (a), (b)(ii) & (d)	
(a)	<i>x</i> is the independent/controlled variable or <i>y</i> is the response/dependent variable or <i>y</i> depends on <i>x</i> or <i>x</i> does not depend on <i>y</i> or <i>x</i> are set/fixed values/intervals	B1	1	Accept x and y in context of question	
(b)(i)	b (gradient/slope) = 0.0355 to 0.0356 b (gradient/slope) = 0.035 to 0.036	B2 (B1)	1	AWFW (0.035544) AWFW	
	$a \text{ (intercept)} = \underline{0.214 \text{ to } 0.222}$ $a \text{ (intercept)} = \underline{0.19 \text{ to } 0.25}$ or	B2 (B1)		AWFW (0.217363) AWFW	
	$\sum_{x = 780}^{x = 780} \sum_{x^2 = 65000}^{x^2 = 65000} (\sum_{y^2 = 95.0731})$ or or	(M1)		Correct attempt at 4 summations (Look for $\sum xy = \sum x \sum y = 23829$)	
	$S_{xx} = 18200$ $S_{xy} = 646.9$ $(S_{yy} = 23.2806)$ Attempt at substitution into a correct corresponding formula for <i>b</i>	(m1)		Correct attempt at 2 summations	
	$b (\text{gradient/slope}) = \underline{0.0355 \text{ to } 0.0356}$ $a (\text{intercept}) = \underline{0.214 \text{ to } 0.222}$	(A1) (A1)	4	AWFW(0.035544)AWFW(0.217363)	
Notes	 es 1 Only if equation stated without "b = and a =", then award marks as detailed above for y = a + bx stated in (b)(i); deduct 1 mark if "y =" or "x" is missing; deduct 2 marks if both "x and y =" are missing 2 Values of a and b interchanged and equation y = ax + b stated in (b)(i) ⇒ max of 4 marks 3 Values of a and b interchanged and equation y = a + bx stated in (b)(i) ⇒ 0 marks 4 Values are not identified or simply a = # and b = #, then (0.035 to 0.036) ⇒ B1 and (0.19 to 0.25) ⇒ B1 but accept, for example, as identification, [a = #, b = # with y = a + bx stated with no substitution for a & b] or [intercept(a) = #, gradient(b) = #] 5 (x or y) = -5.3 + 27.8(y or x) ⇒ 0 marks; unless corrected later, this will result in only the first B1 in (d) being available 6 Some/all of marks can be scored in (b)(ii), (c) & (d), even if some/all of marks are lost in (b)(i), but marks lost in (b)(i) cannot be 				
(ii)	<u>a (intercept)</u> : (expected/average/mean/usual/typical) yield of tomatoes when no/0/zero potassium in a plant's liquid feed or similar/close/near to observed yield (of 0.31)	Bdep1		Dep on $0.19 \le a \le 0.25$	
Note	1 Value of <i>y</i> /yield when <i>x</i> /potassium = $0 \Rightarrow B0$	[ſ	T	
	<u><i>b</i> (gradient/slope)</u> : for each/every increase of a/one mg/l of potassium in a plant's liquid feed	B1			
	a plant's (expected/average/mean/usual/typical) yield of tomatoes increases by a value within 0.035 (kg) to 0.036 (kg)	Bdep1	3	Dep on B1	
Notes	1 To score any marks, an explanation must indicate change in 2 Any increase in potassium must be matched by a correct in 3 Reference only to correlation \Rightarrow B0 Bdep0	x affectinc rease in yie	g change in eld to score	y, not change in y affecting change in x B1dep (eg 10 (mg/l) and 0.35 (kg) to 0.36 (kg))	
SC	1 As <i>x</i> /potassium/mg increases then <i>y</i> /yield/kg increases b stated here but context and/or units are not required	y b (OE)	\Rightarrow B1; or	ly if the value of <i>b</i> ($0.035 \le b \le 0.036$) is	
	Parts (a) & (b)	Total	8		

0	Solution	Mark	Total	Comment	
4	Continued				
	Parts (a) & (b)	Total	8		
(c)(i)	Res _H = -0.28 to -0.23	B2		AWFW; do not ignore sign (-0.25544)	
	Res _H = -0.32 to -0.19 or = $+0.19$ to $+0.32$	(B1)	2	AWFW; either	
(ii)	Sum ₁₁ = ± 0.14 to ± 0.19	B2		AWFW; do not ignore sign (0.16544)	
	Sum ₁₁ = -0.19 to -0.14 or = 0.10 to 0.23 or = -0.41 to -0.28	(B1)		AWFW; do not ignore sign	
			2		
(d)	Extrapolation/outside range or outside data May kill plants Plants have maximum yield	B1		150 & 200 > 120	
	$y_{150} = (5.44 \text{ to } 5.65) > 4.63$	B1		AWFW (5.54896)	
	$y_{200} = (7.19 \text{ to } 7.45) > 4.89$		2	AWFW (7.32615)	
Notes	 Must evaluate one or both of above y-values to within range(s) and clearly compare with corresponding given y-value(s) Accept as comparison(s) "(much) greater or (much) larger or (much) bigger or (much) more than or exceeds or above" (OE) Accept corresponding wording if comparison(s) reversed 				
SCs	1 $r_{150} = (-1.02 \text{ to } -0.81) < (-0.32 \text{ to } -0.19) \text{ and/or } r_{200} = (-2.56 \text{ to } -2.30) < (-0.32 \text{ to } -0.19) \Rightarrow B1$ 2 $((5.44 \text{ to } 5.65) - 4.63))/4.63 = 17.0\%$ to 22.0% and/or $((7.19 \text{ to } 7.45) - 4.89))/4.89 = 47\%$ to 53% \Rightarrow B1				
	3 $(4.89 - 4.63) = 0.26 < 50 \times (0.035 \text{ to } 0.036) = (1.75 \text{ to } 1.75 \text{ to } 1.55 \text{ to } 1.55 \text{ to } 1.55 to $	$1.80) \Rightarrow 1$	31		
	4 $(4.89 - 4.63)/(200 - 150) = 0.26/50 = (0.005 to 0.0052)$	< (0.035 to)	$(0.036) \Rightarrow$	B1	
		Total	14		
L		Ittai	14		

Q	Solution	Mark	Total	Comment
5	Accept 3 dp rounding of probabilities	Accept t	he equivale	nt percentage answers with %-sign (see GN5)
	Emboldened words (at least one chosen from emboldened	options) ar	e requirea	in part (a)
(a)	(i) Appropriate or Yes(ii) Not appropriate or No(iii) Not appropriate or No	B1		All 3 stated correctly Cannot be implied
(i)	n = 20	B1		$\begin{array}{c} CAO \\ P(20, 0.22, (OE)) \rightarrow P2 \end{array}$
	p = 2/6 or 1/3 or 0.3r or 0.33 or 33%	B1		CAO CAO
(ii)	Number of trials or tosses or <i>n</i> is not fixed	B1		No other alternatives
(iii)	P(yellow highlighter pen) or <i>p</i> is not constant/not fixed/variable/changes/varies or selection of pens or events is/are dependent/not independent	B1		No other alternatives
			5	
(b) (i)	$P(M_{LH} \le 3) = 0.471$	B1	(1)	AWRT (0.471121)
(ii)	$P(2 \le W_{LH} \le 6) = 0.9005 \text{ or } 0.7937$ (p ₁)	M1		Seen as first term in a subtraction
	minus 0.0805 or 0.2228 (p_2)	M1		Seen as second term in a subtraction
	= <u>0.82</u>	A1	(3)	AWRT (0.820001)
Notes	1 For no method or calculation of individual terms; award B2 for 0.713 to 0.714 (AWFW); B2 for 0.570 to 0.572 (2 Answers seen using $[(0.9195 \text{ or } 0.7772) - (0.0995 \text{ or } 0.7772) - $	B3 for 0.8 AWFW); H (2063) [id (eg 1 - (0.1)) $(hg \Rightarrow 0 m)$	82 (AWRT): 80 for anythe $(1 - p_2) - 0.08$ 9005 - 0.08 marks	B2 for 0.677 to 0.678 (AWFW); hing else $(1-p_1)$] \Rightarrow M1 M1 A1 max $(05) = 0.18$] \Rightarrow 0 marks
(iii)				
	Use of B(50, 0.10) $P(W_{NLH} > 40) = P(W_{LH} \le 9)$ or $P(W_{LH} < 10)$	B1		Seen or used; can be implied by either 0.9755 or 0.9906 seen
	= 0.9755 or 0.9906	M1		
	= <u>0.975 to 0.976</u> or	A1		AWFW (0.975462)
	Use of B(50, 0.90)	(B1)		Seen or used; can be implied by 0.0245 or 0.0094 or 0.9906 seen
	$P(W_{NLH} > 40) = 1 - P(W_{NLH} \le 40)$			
	= 1 - (0.0245 or 0.0094)	(M1)		
	= 0.975 to 0.976	(A1)	(3)	AWFW (0.975462)
			7	
		Total	12	

Q	Solution	Mark	Total	Comment
6				
(a)(i)	$95\% \implies z = \underline{1.96}$	B1		AWRT (1.95996)
	CI for μ is: $1075 \pm \begin{pmatrix} 1.96 \text{ AWRT} \\ 1.64 \text{ to } 1.65 \text{ AWFW} \end{pmatrix} \times \frac{36}{\sqrt{50}}$	M2 (-1 ee)		Ignore any notation M0 if CI is not of the form: $\binom{1075}{1072} \pm \binom{1.96}{1.64 \text{ to } 1.65} \times \binom{36}{6} / \sqrt{\binom{50}{49}}$
	Thus: or $\frac{1075 \pm 10}{(1065, 1085)}$	Adep1	4	CAO (1075 ± 9.97869) Dependent on award of M2 CAO $(1065.02, 1084.98)$
Note	1 If award of M0 or M1 is followed by a numerically correc	$t CI \Rightarrow p$	ossibly 2 sol	lutions
SC	1 NMS for CI then (1065, 1085) \Rightarrow 4 marks; (1065.0, 10)	085.0) (AW	$(RT) \Rightarrow E$	33
(ii)	CI includes 1072 or 1072 ε CI	BF1		F on (a)(i); providing LCL < 1072 < UCL and 1072 is not used in CI construction
	Hence accept/agree with claim that $\mu = 1072$	Bdep1	2	OE; dependent on BF1
Notes	 Statement must clearly indicate that "1072 is within the 0 Statements of the form "It/this/mean/value/etc is within the 3 Statements of the form "1072 is within 95% of the data/v Statements such as "Claim is likely to be reasonable/support ⇒ Bdep1 but only providing BF1 scored 	correspond he (correspo /alues/millil orted/possib	ing CI" OE onding) CI" itres/bottles le/valid/true	⇒ BF0 Bdep0 " ⇒ BF0 Bdep0 c/right/correct/accurate"
(b)	98% $\Rightarrow z = 2.32 \text{ to } 2.33$	B1		AWFW (2.32635)
	$ \begin{array}{c} \left(\begin{array}{c} 1075\\\mu \text{ or } \overline{x}\end{array}\right) + \left(\begin{array}{c} 2.32 \text{ to } 2.33\\2.57 \text{ to } 2.58\end{array}\right) \times \frac{36}{\sqrt{n}} = 1080\\\\ \text{and}\\\\ \left(\begin{array}{c} 1075\\\mu \text{ or } \overline{x}\end{array}\right) - \left(\begin{array}{c} 2.32 \text{ to } 2.33\\2.57 \text{ to } 2.58\end{array}\right) \times \frac{36}{\sqrt{n}} = 1060\\\\ \text{or}\\1070 + \left(\begin{array}{c} 2.32 \text{ to } 2.33\\2.57 \text{ to } 2.58\end{array}\right) \times \frac{36}{\sqrt{n}} = 1080\\\\ \text{or}\\1070 - \left(\begin{array}{c} 2.32 \text{ to } 2.33\\2.57 \text{ to } 2.58\end{array}\right) \times \frac{36}{\sqrt{n}} = 1060\\\\ \text{or}\\1070 - \left(\begin{array}{c} 2.32 \text{ to } 2.33\\2.57 \text{ to } 2.58\end{array}\right) \times \frac{36}{\sqrt{n}} = 1060 \end{array} $	M1		Use of μ or \overline{x} can score 4 marks Use of 1075 \Rightarrow B1 M1 max Use of anything else \Rightarrow B1 max
	Thus: $ \begin{pmatrix} 2.32 \text{ to } 2.33 \\ 2.57 \text{ to } 2.58 \end{pmatrix} \times \frac{36}{10} = \sqrt{n} $	m1		Re-arranging for \sqrt{n} or n
	$n = 69.76$ to $70.36 \Rightarrow 70$ or 71	A1	4	CAO either (70.14)
SC	1 Method of T&I $z = 2.32$ to $2.33 \implies$ B1; evaluation of since $2.32 \times 36/\sqrt{64} = 10.44(10)$ and $2.33 \times 36/\sqrt{77} = 9.56$	of $\begin{pmatrix} 2.32 \text{ to} \\ 2.57 \text{ to} \end{pmatrix}$ (10) then	$ 2.33 \\ 2.58 \end{pmatrix} \times \frac{36}{\sqrt{n}} $ n = int (64)	with a numerical integer value for $n \Rightarrow M1$; to 77) $\Rightarrow A1$ but $n = 70$ or $71 \Rightarrow A2$
		Total	10	

Q	Solution	Mark	Total	Comment
7	Accept the equivalent percentage answers with %-sign (s	ee GN5)		
(a)				
(i)	$P(L \cap M) = 0.55 \times 0.28 = 0.154$	B1		CAO; accept 154/1000 or 77/500
(ii)	$P(L \cup M) = 0.55 + 0.28 = 0.83$	B1		CAO; accept 83/100
(iii)	$P(L \cup M) = 0.83 - 0.154 = 0.676$	B1	3	CAO; accept 676/1000 or 338/500 or 169/250
Note	1 For fractional answers, do not penalise errors in simplificat	ions; eg 15	4/1000 = 67	$1/500 \implies B1 (for 154/1000)$
(b)				
(i)	$P(A = 3) = 0.94 \times 0.88 \times 0.76$			
	= <u>0.628 to 0.629</u>	B1		AWFW (0.628672)
			1	
(ii)				
	$P(A = 1) = (0.94 \times 0.12 \times 0.24) +$			
	$(0.06 \times 0.88 \times 0.24) +$			Fully correct; not $(1 - 0.88)$, etc
	$(0.06 \times 0.12 \times 0.76)$	M1		
	$\mathbf{or} = 0.027072 + 0.012672 + 0.005472$			Fully correct to 4dp
	= 0.045 to 0.0455	A1	_	AWFW (0.045216)
			2	
(iii)				
	$P(A \ge 2) = (0.94 \times 0.88 \times 0.76)$ or (b)(1) +			Fully correct (c's (b)(i)):
	$(0.94 \times 0.88 \times 0.24) +$			not $(1 - 0.76)$, etc
	$(0.94 \times 0.12 \times 0.76) +$	1/1		
	$(0.06 \times 0.88 \times 0.76)$	MI		
	or $= 0.6286/2$ or (b)(1) +			Fully correct to 4dp (c's (b)(i))
	0.198528 + 0.085728 + 0.040128			
	- 0.053 to 0.0535	Δ1		AWEW (0.953056)
	$- \frac{0.755}{0.755} \frac{10}{0.7555}$	AI		AWIW (0.955050)
	$D(\Lambda > 2) =$			
	$1 (A \ge 2) =$ 1 = [0.045216 or (b)(ii)] = (0.06 × 0.12 × 0.24)	(M1)		1 - (b)(ii) = 0.001728
	$1 = [0.045210 \text{ of } (0)(1)] = (0.00 \times 0.12 \times 0.24)$	(111)		1 (0)(1) 0.001720
	= 0.953 to 0.9535	(A1)		AWFW (0.953056)
		()	2	
(iv)			_	
(A)	P(A = 4) = 0.603 to 0.604	B1		AWFW (0.60352512)
~ /			(1)	
(B)				
	$P(A = 0) = (0.06 \times 0.12 \times 0.24) \times 0.52$	M1		Fully correct
	= 0.000898 to 0.000899	A1		AWFW; (see GN7) (0.00089856)
			(2)	
			3	
		Total	11	